maintained), sharply decreasing with a decline in the load. This region disappears only at the instant the plate
stops.
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ELASTOPLASTIC STRAIN OF THIN PLATES AND SHELLS
UNDER LINEAR HARDENING AND AN IDEAL
BAUSCHINGER EFFECT

G. V. Ivanov UDC 539.3

The elastoplastic strain of thin plates and shells is considered in the case when the elongation and shears
are small compared with unity, the hardening is linear, the Bauschinger effect is ideal, and the stresses and
strains are related by equations [1, 2]. In solving problems numerically by using the equations [1, 2], it is
necessary to evaluate integrals over the plate (shell) thickness and thus to store and process, respectively,
information about the stresses, the residual microstresses, and the nature of the strain at the sites over the
plate (shell) thickness during the solution. Analogously to the case of ideal elastoplastic strain of plates and
shells [3], approximate equations which contain no stresses and relate the strain directly to the forces and
moments are formulated below in correspondence to the equations in [1, 2]. The need to evaluate integrals
over the platc (shell) thickness drops out in solving problems by using these equations, which simplifies the
solution. Numerical experiments performed for a number of strain paths of the shell element exhibit satis-
factory agreement of the approximate equations with the equations of [1, 2].

81. Let us use a Lagrange coordinate system, orthogonal in the unstrained state, to write the equations.
For small elongations and shears, the system under consideration can be considered orthogonal in the strain
state as well. The strain and stress tensor components are related in the case of elastoplastic strain with
linear hardening and an ideal Bauschinger effect (Fig. 1) by the equations [1, 2]

eij= (1 +v)0ij — 3v8;;0 + ¥nyjy  Mij = Asij;
A=0, if 3T?<1 o 3T2=1, T <0
A>0, i 321, T =0;
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Fig. 1 Fig. 2

’ ’ ’ H
Sij =0 — 15, Gij=0;;,— 8,0, o= 58,045, (1.1)

Tr= sl Y= (BE 1), ij=1,2,3,

where Oij» €jj are the stress and strain referred, respectively, toog and o5/ E, og is the yield point under
uniaxial tension (see Fig. 1), E is Young's modulus, the point denotes differentiation with respect to the load-
ing parameter, v is the Poisson ratio, and E' = tang is the tangent modulus of the uniaxial tension diagram
(see Fig. 1).

Let us assume that the stress state of the shell is planar (53; = o435 = 053 = 0) but the strain corresponds
to the Kirchhoff hypothesis. Let us use the notation

Cap = eupt 20%ap,  L=23/h, Sap=Sap + BasS, (1.2)

. . q
§ = — 533 = OugSap = 5~ Bapsas, @.p=1,2

z is a coordinate measured from the middle surface along the normal to it, and h is the shell thickness. Evi-
dently,

Oap = SaB + NeB + ‘Sa,ﬁ'f]v n= 6mﬂﬂaﬁ' (1.3)

§2. Let us assume that a shell element is completely (over the whole thickness) deformed plastically
and the elastic strain rates are negligibly small compared to the plastic strain rates. In this case

Eap + 20%ap = Yo, Map = ASaps

2.1)
37 = '“Z—S:y,ﬁsa,ﬁ = —g— (sugsap + %) =1
and, therefore,
i
Bap = Vs Hap = ~-V0aps  Gup = 5 5 Mopdls Bup= 5 Meldl,s
L - 1 -
Pag€ap + Hap¥ap = YA, Dop = —;— 51 Sapdl,  Hap = jlsw’;dQ 2.2)

1

6A7 =2y § AL =16 | ((sap -+ 2Luap) (oo + 20nen) +
=1 1
4 [Bap (eap + 20ap) 212 AL, pap = Y0M/020s,  pap = VOA/Oxap.
According to (2.2}, the six quantities pag, ugg are functions of five arguments — ratios of strain rates. Hence,

the same dependence holds between pyg, Hgp as between the forces and moments in the limit state of ideally
plastic shells [3, 4]. Let us approximate it by the equation [3, 4]

~ 1, 1= Q45 O — (QuQn— Qhn)/4 (Q: + 0.480s,,) +

1 3 . 3 ’ 3 s
~+ =5 VQ?n + 40%#1: Q= 5~ PafPags Om = 5 MHaplag Qtm = 5~ Pudlag,



, 1 ’ 1
Pup = Pop — OapPr D=3 OapPaps Hap = Pap — Supht, b = 5~ Saupblap. 2.3)
It has been shown in [4] that the dependence (2.3) differs insignificantly from the exact value,

Using (2.3), let us replace (2.1) by the approximations

. . . 3 .
Eqp == Vo) Hop = T'Yeath f=1,

. 2.4
q;xﬁ = cpaf/apoc; y ec'xﬁ = 5 (Paf/auaﬁ-
Let tyg, mgyg denote the forces and moments in the shell:
1 1
tap = - S Gapdl, Mop = 5 Oapldl.
-1 1
Using (1.3), we find
taﬂ = Pab + 9ap + aaﬁq: q = Gabqq,ﬁn (2 5)

Mep = Pop T Oup + 0488, 0 = 6,50,5.

Equations (2.4) and (2.5) form an approximate system of equations relating the strain rates :Eozﬁ, Yoy g to
the forces ty,g and moments mg g in conformity with the case when the shell element is completely (over the
whole thickness) deformed plastically and the elastic strain rates are negligibly small compared with the plas-
tic strain rates.

§3. In the general case of deformation of a shell element, we assume that for f < 1 as well as f=1,
f* < 0, the plastic strain rates over the whole thickness of the element are zero (the element is deformed
elastically), while for f= 1, £ = 0 the plastic strain rates are determined by (2.4). Correspondingly,

eap = (1 -+ ) tap — 3v0agt’ + Vg,  Gop = c9Of/0Pasp,
. 3 . . . .
#op = - [(1 + ) mup — 3vBagm’ + v02p], O = - cqOf/Dpiag,

0, f f<l o f=1, f<0,
1, if' f=1, f=0,

3.1

¢C =

1 1
t= T 6aﬁtaﬁ, m = T aaﬂmaﬂu

Supplementing (3.1) by the relationships (2.5}, we obtain an approximate system of elastoplastic plate and shell
strain equations with linear hardening and an ideal Bauschinger effect. It contains no stresses and relates the
strain rates gq Bs Ma p directly to the forces ty3 and moments myg. From (2.5) and (3.1) we find

(1 — %) pag = (1 — v) ep + vBuge’ — (4 — 5v + V) v8apg — v (1 +v +¥) ats
(1 — v2) pap = -‘§— [(1 — ) %ep + 8 1 — (4 — 5v + ¥) v8ap0” — v(1 + v + ¥) Ocps
& = Buptaps % = Oapap
and, therefore,
(1 —vif = Q@ — ¢S,
Q = [(1 — ) up + v8ape 101/0pag + o= [(1 — v) %ep -+ v8ap’10f/Opag
S = v{(4—5v 4+ Y)(0f/0pyy + 01/0p.)* + (4/3)(8f/0py, + 8f/pay)*] +
+ (1 + v + V)008f/0p.g5-0f/0p,p -+ (4/3)0f/0 4 0f/011 481}
Hence, the function ¢ in (3.1) can be written as
= Q'/8§,
and the conditions for ¢ in (3.1) can be replaced by the conditions

0, if f<tlo f=1, <0,
M, i f=1, Q>0
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Fig. 3 Fig. 4

In solving problems by using (3.1), it is convenient to evaluate the function f and its derivatives by means
of the formulas

f = Qy + 26Qup + Q> 9f/0Pap = 3 (apap + bitag),
3f/0yap = 3 (bpag + duep), @ =1 — (Qhn 4 0.48Q%) NF,
Ny = (0 +0.48Qm ", b= Qun(Na -ty )y Ny=(Qh+4QE)",
A= (1 4 QuiVy) — (0} +0.48Q%) .

§4. In the case y = 0 the shell element is deformed elastically, and (3.1) and (2.5) correspond exactly to
(1.1)-(1.3). Inthe case y = =, Egs. (1.1)-(1.3) go over into the equations of ideal elastoplastic shell strain [3].
The correspondence between (3.1) and (2.5) and (1.1)-(1.3) is satisfactory in this case [3].

To compare the results from using (3.1) and 2.5) with the results from (1.1)-(1.3), let us consider the
bending of a shell element for a proportionate change in the curvature,

e = 20kit, sy = 2Tkot, €pp = 0,
for 0 < y <=, where k; and k, are constants, and t is the strain parameter. For simplicity let us set v =1/2.

In this case, the strain according to (1.1)-(1.3) will be elastic,
- 4 ) - 4 \
041 =—~ L2k, + k), 00 =35~ £ {2k 4 Fy)s (4.1)

fort<tyaswellas fort= 1ty 11 <&

to=V3[16 (k + kuky + )] V2, T, = t,/1.
The deformation will be plastic,

011 = 45 (2k; + E,)/(3 + 27), @.2)
Ogp =48 (2k; + %1)/(3 + 2v),

for t = ty, 1 £ = g;. Let us use the notation

M = 9my, 182k, + k)tg]* = 9myy[8(2k, + k11,

T == bt
From (4.1) and (4.2) we find
M=11<l M=1[t+y— U3yt {1 + (23pl1r > 1. 4.3)
According to (3.1) and (2.5),
M= t<<32 M= (t+yl1 + 23y} t=32 4.4
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The difference between the results of using (4.3) and (4.4) for 0 < y < » evidently does not exceed the difference
for v = . Results of calculations using (4.3) (solid lines) and (4.4) (dashed lines) are presented in Fig. 2 for

Y=6, 7=
Results of calculating the forces and moments by means of (1.1)-(1.3) (solid lines) and (3.1) and (2.5)
(dashed lines) are presented in Figs. 3 and 4 for a shell element deformed according to the law

E1p = %ip == Mpp = 0, %i1=Yeaz, E11=— (1/2) ez,
ggo =1, 0<<i<Cty; eop=—1, b <<E<L2fy,

where the point denotes differentiation with respect to t. The results in Fig. 3 correspond to y = 0.5 and in
Fig. 4 to x. = 5. The calculation was performed for » = 0.3, 'y = 6, t; = 2. In evaluating tyg, myp by means of
(1.1)-(1.3) the integrals were replaced by Simpson quadratures with 21 sites. The computation procedure is
analogous to that elucidated in [3].

: The results in Figs. 2-4, the calculations for other shell element strain paths, and the comparison with
the results in [3] all show that (3.1) and (2.5) correspond satisfactorily to (1.1)~(1.3), the difference in the re-
sults for y < « not exceeding this difference in the case of ideal elastoplastic shell strain [3].
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SINGULAR SOLUTIONS OF EQUATIONS OF SHALLOW
SHELLS FOR A CONCENTRATED TANGENTIAL LOAD

V. P. Ol'shanskii UDC 539.3

As we know [1, 2], in the case of action of concentrated loads the solutions of the shell equations have a
singular character. These solutions have been set up by various methods primarily for a normal concentrated
force. An attempt to obtain the fundamental solutions for a tangential force lead to very cumbersome results
[3]. Below, by the method of Fourier integral ‘transforms, it was possible to obtain more compact solutions
in the form of power and trigonometric series. As an addition to the well-known results in the analysis of
singularities of the stress state in the vicinity of a concentrated source of radius r, it is shown that in addition
to the tangential forces increasing as r~! for r — 0, one of the shear forces also has a weaker singularity of
logarithmic form. Asymptotic expressions of the behavior of the fundamental solutions for small values of the

argument are given.
The analysis of the elastic local stress state is carried out on the basis of the equations of the theory

of thin, shallow, isotropic shells. The solution of these equations by means of the two-dimensional Fourier
transform, which is expounded in detail in [3], gives the following values of the components of internal force

quantities:

h=1— p)
+(a2—va3—i—1 ba4>A] tz=1—_2_1§,[ 1—"“114“7;11‘1 +

+ (Vax + 1—| L: b4a5) Ay - (‘az — g+ 1+M’ b ‘14) AG]’

_zx[i—vAl+2—v—v2Az+(a1_!_17~j";baaﬁ)As_,_
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