
maintained),  sha rp ly  dec reas ing  with a decline in the load. This region d i sappea r s  only at the instant  the plate 
stops.  
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E L A S T O P L A S T I C  S T R A I N  O F  T H I N  P L A T E S  A N D  S H E L L S  

U N D E R  L I N E A R  H A R D E N I N G  A N D  AN I D E A L  

B A U S C H I N G E R  E F F E C T  

G. V. I v a n o v  UDC539 .3  

The e las top las t ie  s t r a i n  of thin pla tes  and shel ls  is cons idered  in the ca se  when the elongation and shea r s  
a re  smal l  c o m p a r e d  with unity, the hardening is l inear ,  the Bausehinger  effect  is ideal,  and the s t r e s s e s  and 
s t r a in s  a re  re la ted  by equations [1, 2]. In solving p rob l ems  numer ica l ly  by using the equations [1, 2], it is 
n e c e s s a r y  to evaluate  in tegra ls  over  the pla te  (shell) th ickness  and thus to s t o r e  and p r o c e s s ,  r e spec t ive ly ,  
informat ion  about the s t r e s s e s ,  the res idua l  m i c r o s t r e s s e s ,  and the nature  of the s t r a i n  at the s i tes  over  the 
pla te  (shell) th ickness  dur ing the solution. Analogously to the case  of ideal e las toplas t ic  s t r a i n  of pla tes  and 
shel ls  [3], approx imate  equations which contain no s t r e s s e s  and re l a t e  the s t r a i n  d i rec t ly  to the fo rces  and 
moments  a re  fo rmula ted  below in co r r e spondence  to the equations in [1, 2]. The need to evaluate  in tegra ls  
over  the plate  (shell) th ickness  drops  out in solving p rob l ems  by using these  equations,  which s impl i f ies  the 
solution. Numer ica l  expe r imen t s  p e r f o r m e d  for  a number  of s t r a i n  paths of the shel l  e lement  exhibit s a t i s -  
fac tory  ag reemen t  of the approx imate  equations with the equations of [1, 2]. 

w Let  us use  a Lagrange  coordinate  s y s t em,  or thogonal  in the unst ra ined s ta te ,  to wr i t e  the equations. 
For  sma l l  elongations and s h e a r s ,  the s y s t e m  under  cons idera t ion  can be cons idered  orthogonal  in the s t r a i n  
s ta te  as well.  The s t r a i n  and s t r e s s  t e n s o r  components  a re  re la ted  in the case  of e las top las t ic  s t r a in  with 
l inear  hardening and an ideal Bauschinger  effect  (Fig. 1) by the equations [1, 2] 

e~s = (1 + ~,),:r~s - -  3 ~ , 8 ~ / - I -  7n{s, ~ s  = ~s~s; 
= 0 ,  ff 3T 2 < t  or 3T 2 = t ,  T ' < 0 ;  

~ ,>0 ,  ff 3T ~ = f ,  T'=~0; 
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139, March -Apr i l ,  1978. Original  a r t i c l e  submit ted  Feb rua ry  8, 1977. 
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Fig. 1 Fig.  2 

s i i = a l i - - ~ h ~ '  ( r ~ i = a ~ - - 6 ~ a '  a = - ~ - 6 ~ J a t i '  (1.1) 

T~ = -~-i s~is~ ' ? = + (E/E' --  1), i, ,i = l, 2, 3, 

w h e r e  a i j ,  eij a r e  the s t r e s s  and s t r a i n  r e f e r r e d ,  r e s p e c t i v e l y ,  to  a s  and a s / E ,  as  is the y ie ld  point  under  
uniaxiai  t ens ion  (see Fig.  1), E is Young ' s  modulus ,  the point  denotes  d i f fe ren t i a t ion  with r e s p e c t  to the load-  
ing p a r a m e t e r ,  ~ is the  P o i s s o n  ra t io ,  and E ~ = tan~p is the tangent  modulus  of  the uniaxial  t ens ion  d i a g r a m  
(see Fig. 1). 

Let  us a s s u m e  that  the s t r e s s  s ta te  of the shel l  is p lanar  (a33 = ~rl3 = a23 = 0) but the  s t r a i n  c o r r e s p o n d s  
to  the  Ki rchhof f  hypothes i s .  Let  us use  the notat ion 

e~t~ = s ~ +  2~• ~=2z/h,  s~=s'~i~ + 6~s ,  (1.2) 

=--g-6=t~ =~, ~,[~ = t ,  2, 

z is a coordinate measured from the middle surface along the normal to it, and h is the shell thickness. Evi- 
dently, 

~=1~ = s=~ + ~l,z~ + 5q,~l, ~1 ---- 6=~1~- (1.3) 

~2. Let  us a s s u m e  that  a shel l  e l emen t  is comple t e ly  (over the whole  th ickness)  d e f o r m e d  p las t i ca l ly  
and the e las t ic  s t r a i n  r a t e s  a r e  negl igibly s m a l l  c o m p a r e d  to the p las t ic  s t r a i n  r a t e s .  In this c a s e  

and, therefore, 

~ + 2~• = Wl~fi, 'd~ = ~ ,  

3 , 3 , �9 3T = -~-- s ~ s ~  = - ~  ( s~sa~ + s ~) = t 

i 

�9 �9 - 3 O" I ~13=Yq~zts, x~z~=--~-y ~t~, q~l~=-~" Tirade, 0~f~=s162 ~d~, 

l 1 

S i' �9 t s .~d~,  = s~rd~,  
- - i  - - I  

t 

- - t  - - t  

+ [ ~  (~;~ + 2~x~,~)] ~1'/~ d~, p~  = v0A/0~;~, g~ = V0A/0• 

(2.1) 

(2.2) 

According to (2.2), the six quantities p~fl, ,u~fl are functions of five arguments - ratios of strain :rates. Hence, 
the same dependence holds between pa~, pail as between the forces and moments in the limit state of ideally 
plastic shells [3, 4]. Let us approximate it by the equation [3, 4] 

t 
] = 1, [ == Qt + T Qm - (QtOra - Q~t,~)/4(qt + OA8Q, m) + 

4 z 3 �9 3 , 3 �9 
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t 
p ~  = p ~  -- 8~p, p = ~ 8=vpa~, ~ = ~ -- 6~,~, ~ = + 8 = ~ .  

It has been shown in [4] that the dependence (2.3) differs insignificantly f rom the exact value. 

Using (2.3), let us rep lace  (2.1) by the approximations 

�9 �9 3 �9 / = 1 ,  

(2.3) 

(2.4) 

Let tfffi, m a r  t denote the forces  and moments  in the shell: 

t t 

--1 - - I  

Using (1.3), we find 

m=~ = ~%~ + 0~  + 6a~O , 0 = 6=~%~. 
(2.5) 

Equations (2.4) and (2.5) form an approximate sy s t em of equations relat ing the s t ra in  ra tes  earl, ~ / / t o  
the forces  t~fi and moments  ma~ in conformity with the case  when the shell element is completely (over the 
whole thickness) deformed plast ical ly and the elast ic s t ra in  rates  are  negligibly small  compared with the p las-  
tic s t ra in  rates .  

w In the general  case  of deformat ion of a shell element,  we assume that for f < 1 as well as f = 1, 
f" < 0, the plastic s t ra in  ra tes  over the whole thickness of the element are  zero  (the element is deformed 
elast ically),  while for f = 1, f" = 0 the plast ic s t ra in  ra tes  a re  determined by (2.4). Correspondingly,  

0, if l < i  or / = l ,  l ' < O ,  
c =  l, if' ] = l ,  / ' = 0 ,  

t 

(3.1) 

Supplementing (3.1) by the relat ionships (2.5), we obtain an approximate sy s t em of elastoplastie plate and shell 
s t ra in  equations with l inear  hardening and an ideal Bauschinger effect. It contains no s t r e s ses  and relates the 
s t ra in  ra tes  ~(~/~, ~a/3 direct ly  to the forces  t a f  t and moments marl. F r o m  (2.5) and (3.1) we find 

( t  -- ~) p ~  = (1 -- v) ~ + ~8~6" -- (4 - - S v  + ~),~8~q" -- ~ ( t  + v + V) q ~ ,  

( i  - ~') ~ = ~ -  [ ( t  - ~) ~ + ~ z ' ]  - (4 - 5~ + ~) ~8~0" - ~ ( i  + ~ + v) 0 ~ ,  

and, therefore ,  

( i  - -  v~)[" = 6" - -  c~S, 

~ = [(1 - ~) ~ + ~ / ]  o//opr + ~ [(1 - ~) ~'~ + ~8~'] o//o~,~, 
S = ,v{(4--5v + v) t(O]/Opn + 0]/0p22) 2 :t- (4/3)(Of/Op~: + 0]/0[~2~) 21 + 

Hence, the function ~p in (3.1) can be wri t ten as 

= ~ ' /S ,  

and the conditions for c in (3.1) can be replaced by the conditions 

0, if I < i  or I = i ,  ~ ~<0, 
e---- i, if ] ~ t ,  Q ' > 0 .  
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Fig. 3 Fig.  4 

In so lv ing  p r o b l e m s  by us ing  (3.1), it is conven ien t  to eva lua te  the funct ion f and i ts  de r i va t i ve s  by means  
of  the  f o r m u l a s  

f = aO, -}- 2bQ,,, -5 dQ,,, Of/Opcz~ = 3 (ap'~ -5 bg'~), 

N1 - - (O,  § 0-48Q~) -~, b = O,~ N 2 + - T j N ~  , N~ = (Q~+4Q~m) -~/2, 

= ( t  + 0 J , )  - + d 0.48Q~) N~. 

w In the  c a s e  7 = 0 the  shel l  e l e m e n t  is d e f o r m e d  e l a s t i c a l l y ,  and (3.1) and (2.5) c o r r e s p o n d  exac t ly  to 
(1.1)-(1.3). In the  c a s e  Y = o% Eqs .  (1.1)-(1.3) go o v e r  into the  equat ions  of  ideal  e l a s top la s t i c  shel l  s t r a i n  [3]. 
The c o r r e s p o n d e n c e  be tween  (3.1) and (2.5) and (1.1)-(1.3) is s a t i s f a c t o r y  in this  c a s e  [3]. 

To c o m p a r e  the  r e s u l t s  f r o m  us ing  (3.1) and (2.5) wi th  the  r e s u l t s  f r o m  (1.1)-(1.3),  let  us c o n s i d e r  the 
bending  of a shel l  e l e m e n t  for  a p r o p o r t i o n a t e  change  in the  c u r v a t u r e ,  

eal = 2~klt, e~ = 2~k~t, ea~ = O, 

for  0 < 7 < ~ ,  w h e r e  k~ and k 2 a r e  cons t an t s ,  and t is the  s t r a i n  p a r a m e t e r .  F o r  s imp l i c i t y  le t  us  se t  v = 1 / 2 .  

In this  c a s e ,  the  s t r a i n  a c c o r d i n g  to (1.1)-(1.3) wil l  be e l a s t i c ,  

�9 4 4 
alt = --~ ~ (2kl -5 ks), a22 = - ~  ~ (2k~ -5 kl), (4.1) 

f o r t < t  o a s w e l l a s  for  t _ > t  o , t~1 < ~0 

to Vg[16(k  
The d e f o r m a t i o n  wil l  be p las t i c ,  

~o= to/t. 

f o r t _ >  to, I~1 >- ~0. 

oi~ = 4{ (2kl -5 k2)/(3 -5 27), 

(~2 =4~ (2k~ -~ kl)/(3 -5 27) , 

Le t  us use  the nota t ion  

M = 9m1~ [8(2kl + k2)t o ]-i .=- 9m~ [8(2k.z + kl)to ]-i ,  

x ~= t/t o. 

F r o m  (4.1) and (4.2) we  find 

A c c o r d i n g  to (3.1) and (2.5), 

M ~ % ,~ ~ t; M = ['r + 7 - -  (t/3)'1'~1 [l -~- (2/3)71-~,-~) I. 

M = ~ : ,  " ~ 3 / 2 ;  M ~ ( T + 7 ) [ t  +(2 /3)7 l  -~, - ~ 3 / 2 .  

(4.2) 

(4.3) 

(4.4) 
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The difference between the resul ts  of using (4.3) and (4.4) for 0 < T < ~ evidently does not exceed the difference 
for T = ~o. Results of calculations using (4.3) (solid lines) and (4.4) (dashed lines) a re  presented in Fig. 2 for 
7 = 6 ,  y=~o.  

Results  of calculating the forces  and moments  by means of (1.1)-(1.3) (solid lines) and (3.1) and (2.5) 
(dashed lines) a re  presented in Figs.  3 and 4 for a shell element deformed according to the law 

~12 = • = ~22 = 0,  z l i  = ~ 2 2 ,  ~'ii = - ( t /2)  8~2, 

E22 = J, 0 < t ~< ti; e~2 = -- i, t i < t ~ 2t i, 

where  the ,point denotes differentiat ion with respec t  to t. The resul ts  in Fig. 3 cor respond to % = 0.5 and in 
Fig. 4 to • = 5. The calculat ion was pe r fo rmed  for v = 0.3, 7 = 6, tt = 2. In evaluating taft, maf~ by means of 
(1.1)-(1.3) the integrals  were  replaced by Simpson quactratures with 21 sites.  The computation procedure  is 
analogous to that elucidated in [3]. 

The resul ts  in Figs. 2-4,  the calculations for Other shell element s t ra in  paths, and the compar ison  with 
the resul ts  in [3] all show that (3.1) and (2.5) cor respond  sa t i s fac tor i ly  to (1.1)-(1.3), the difference in the r e -  
suits for  T < r not exceeding this difference in the case  of ideal elastoplast ic  shell s t ra in  [3]. 
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S I N G U L A R  S O L U T I O N S  O F  E Q U A T I O N S  O F  S H A L L O W  

S H E L L S  F O R  A C O N C E N T R A T E D  T A N G E N T I A L  L O A D  

V. P .  O l ' s h a n s k i i  UDC539.3 

As we know [1, 2], in the case  of action of concentrated loads the solutions of the shell equations have a 
singular charac te r .  These solutions have been set  up by various methods p r imar i ly  for a normal  concentrated 
force.  An attempt to obtain the fundamental  solutions for a tangential force  lead to very  cumbersome resul ts  
[3]. Below, by the method of Four ie r  integral  t r an s fo rms ,  it was possible to obtain more  compact  solutions 
in the fo rm of power and t r igonomet r ic  se r i e s .  As an addition to the well-known resul ts  in the analysis of 
s ingular i t ies  of the s t r e s s  state in the vicinity of a concentrated source  of radius r ,  it is shown that in addition 
to the tangential forces  increas ing as r -1 for r - -  0, one of the shear  forces  also has a weaker  singulari ty of 
logari thmic form. Asymptot ic  express ions  of the behavior of the fundamental solutions for small  values of the 

argument are  given. 

The analysis  of the elast ic local s t r e s s  s tate  is ca r r i ed  out on the basis of the equations of the theory 
of thin, shallow, isotropic shells. The solution of these equations by means of the two-dimensional  Four ier  
t r ans fo rm,  which is expounded in detail in [3], gives the following values of the components of internal force 

quantities: 

- - 2 X [ i - - v  A 2 - - v - - ' ~ 2 ~  , ( ._t_ ~.-k-, b4as)As+ 
tl = ~ I--T- 1 -t- ----5---- "~ T ai , 1 -- ~ 

-t-(a,--vaa-k- xl +~b'aa)A,],  tz Vs-~[v--V-~x+ 
+ ( v a i  j i-'L~''a,-~oaS) • "A 5 -~-' (va, -- a n t- l + xv''~ o aa}'~ Aa], 

Khar'kov. Transla ted f rom Zhurnal Prikladnoi Metdaaniki Tekhnicheskoi Fiziki, No. 2, pp. 139-144, 
March-Apr i l ,  1978. Original  a r t i c le  submitted Februar~  8, 1977. 
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